Locally Pseudo-Distance-Regular Graphs

نویسندگان

  • Miguel Angel Fiol
  • Ernest Garriga
  • José Luis Andres Yebra
چکیده

The concept of local pseudo-distance-regularity, introduced in this paper, can be thought of as a natural generalization of distance-regularity for non-regular graphs. Intuitively speaking, such a concept is related to the regularity of graph 1 when it is seen from a given vertex. The price to be paid for speaking about a kind of distance-regularity in the non-regular case seems to be locality. Thus, we find out that there are no genuine ``global'' pseudo-distance-regular graphs: when pseudodistance-regularity is shared by all the vertices, the graph turns out to be distanceregular. Our main result is a characterization of locally pseudo-distance-regular graphs, in terms of the existence of the highest-degree member of a sequence of orthogonal polynomials. As a particular case, we obtain the following new characterization of distance-regular graphs: A graph 1, with adjacency matrix A, is distance-regular if and only if 1 has spectrally maximum diameter D, all its vertices have eccentricity D, and the distance matrix AD is a polynomial of degree D in A. 1996 Academic Press, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Spectral Excess Theorem for Distance-Regular Graphs: A Global (Over)view

Distance-regularity of a graph is in general not determined by the spectrum of the graph. The spectral excess theorem states that a connected regular graph is distance-regular if for every vertex, the number of vertices at extremal distance (the excess) equals some given expression in terms of the spectrum of the graph. This result was proved by Fiol and Garriga [From local adjacency polynomial...

متن کامل

From Local Adjacency Polynomials to Locally Pseudo-Distance-Regular Graphs

The local adjacency polynomials can be thought of as a generalization, for all graphs, of (the sums of ) the distance polynomials of distance-regular graphs. The term ``local'' here means that we ``see'' the graph from a given vertex, and it is the price we must pay for speaking of a kind of distance-regularity when the graph is not regular. It is shown that when the value at * (the maximum eig...

متن کامل

D-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs

The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...

متن کامل

Pseudo primitive idempotents and almost 2-homogeneous bipartite distance-regular graphs

Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4, valency k ≥ 3 and intersection numbers ci , bi (0 ≤ i ≤ D). By a pseudo cosine sequence of Γ we mean a sequence of scalars σ0, . . . , σD such that σ0 = 1 and ciσi−1 + biσi+1 = kσ1σi for 1 ≤ i ≤ D − 1. By an associated pseudo primitive idempotent we mean a nonzero scalar multiple of the matrix ∑D i=0 σi Ai , where A0, . . . , ...

متن کامل

The nonexistence of distance-regular graphs with intersection arrays {27, 20, 10;1, 2, 18} and {36, 28, 4;1, 2, 24}

Locally, a distance-regular graph with ‘μ = 2’ carries the structure of a partial linear space. Using this, we show that there are no distanceregular graphs with intersection array {27, 20, 10; 1, 2, 18} or {36, 28, 4; 1, 2, 24} (on, respectively, 448 or 625 vertices).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 68  شماره 

صفحات  -

تاریخ انتشار 1996